Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.662
Filtrar
1.
Chemosphere ; 355: 141772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548084

RESUMO

Carbamazepine (CBZ) is the most commonly used drug in epilepsy treatment, and its metabolites are commonly detected among persistent pharmaceuticals in the aquatic environment. This study aimed to investigate CBZ effects on early-life-stage zebrafish (Danio rerio) (from 2 to 168 hpf) by employing of an integrative approach linking endpoints from molecular to individual level: (i) development; (ii) locomotor activity; (iii) biochemical markers (lactate dehydrogenase, glutathione-S-transferase, acetylcholinesterase and catalase) and (iv) transcriptome analysis using microarray. A 168 h - LC50 of 73.4 mg L-1 and a 72 h - EC50 of 66.8 mg L-1 for hatching were calculated while developmental effects (oedemas and tail deformities) were observed at CBZ concentrations above 37.3 mg L-1. At the biochemical level, AChE activity proved to be the most sensitive parameter, as evidenced by its decrease across all concentrations tested (∼25% maximum reduction, LOEC (lowest observed effect concentration) < 0.6 µg L-1). Locomotor behaviour seemed to be depressed by CBZ although this effect was only evident at the highest concentration tested (50 mg L-1). Molecular analysis revealed a dose-dependent effect of CBZ on gene expression. Although only 25 genes were deregulated in organisms exposed to CBZ when compared to controls, both 0.6 and 2812 µg L-1 treatments impaired gene expression related to development (e.g. crygmxl1, org, klf2a, otos, stx16 and tob2) and the nervous system (e.g. Rtn3, Gdf10, Rtn3), while activated genes were associated with behavioural response (e.g. prlbr and taar). Altogether, our results indicate that environmentally relevant CBZ concentrations might affect biochemical and genetic traits of fish. Thus, the environmental risk of CBZ cannot be neglected, especially in a realistic scenario of constant input of domestic effluents into aquatic systems.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Acetilcolinesterase/metabolismo , Carbamazepina/metabolismo , Dose Letal Mediana , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero
2.
Chemosphere ; 354: 141652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462182

RESUMO

The high diversity and distinctive characteristics of stingless bees pose challenges in utilizing toxicity test results for agrochemical registrations. Toxicity assessments were performed on 15 stingless bee species, along with the honey bee, using the insecticide dimethoate, following adapted OECD protocols. Median lethal doses over 24 h (24 h-LD50) were determined for exposure routes (acute oral or contact) and species. Species sensitivity distribution (SSD) curves were constructed and the 5% hazard doses (HD5) were estimated based on 24 h-LD50 values. The SSD curve was adjusted as the body weight and dimethoate response were correlated. Lighter bees (<10 mg) had lower 24 h-LD50 values. Contact exposure for adjusted HD5 suggested insufficient protection for Melipona mondury, whereas the oral exposure HD5 indicated no risks for the other 14 species. Comprehensive risk assessments are crucial for understanding the agrochemical impact on stingless bees, emphasizing the need for a broader species range in formulating conservation strategies.


Assuntos
Dimetoato , Inseticidas , Abelhas , Animais , Dimetoato/toxicidade , Inseticidas/toxicidade , Dose Letal Mediana , Agroquímicos , Peso Corporal
3.
Chem Biol Interact ; 393: 110951, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38484827

RESUMO

This article focusses on elucidating the toxicological profile of minoxidil, a widely used pharmacological agent for alopecia, through the application of in silico methods (Percepta ACD/Labs software). This research is driven by the need to understand key toxicological endpoints: acute toxicity, skin and eye irritation, genetic toxicity, cardiotoxicity, disruption of the endocrine system, and estimation of various health effects due to the lack of experimental data for this drug. These parameters are critically evaluated to meet the stringent requirements of the pharmaceutical industry's safety assessments. The results obtained for acute toxicity (LD50 for rats and mouse) indicate that minoxidil exhibits a species-dependent acute toxicity profile e.g. 51 mg/kg bw for intravenous administration in mice. The predicted health effects indicate a 93% risk to the gastrointestinal system, 54% for the kidneys, 52% for the liver, 42% for the blood and lungs, and 39% for the cardiovascular system. The prediction of genotoxicity suggests a moderate probability (48%) of inducing a positive Ames test result. Furthermore, moderate inhibition of the hERG channel indicates potential cardiac risks of Minoxidil. Based on the information obtained, we propose subjecting minoxidil to additional toxicological assessments. The successful adoption of these in silico methodologies aligns with the 3 R s principle (replacement, reduction, and refinement) in the field of modern toxicological studies of minoxidil, all without the use of laboratory animals for the novelty of our toxicity assessment.


Assuntos
Cardiotoxicidade , Minoxidil , Ratos , Camundongos , Animais , Minoxidil/toxicidade , Pele , Preparações Farmacêuticas , Dose Letal Mediana
4.
BMC Pharmacol Toxicol ; 25(1): 15, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317260

RESUMO

BACKGROUND: Zinc Gluconate (ZG) is a safe and effective supplement for zinc. However, there is limited research on the optimal dosage for intravenous injection and the safety evaluation of animal models for ZG. This study aims to determine the safe dose range of ZG for intravenous injection in C57BL/6J mice. METHODS: A Dose titration experiment was conducted to determine the LD50 and 95% confidence interval (95%CI) of ZG in mice. Based on the LD50, four sub-lethal doses (SLD) of ZG were evaluated. Following three injections of each SLD and monitoring for seven days, serum zinc levels were measured, and pathological changes in the liver, kidney, and spleen tissues of mice were determined by histological staining. RESULTS: The dose titration experiment determined the LD50 of ZG in mice to be 39.6 mg/kg, with a 95%CI of 31.8-49.3 mg/kg. There was a statistically significant difference in the overall serum zinc levels (H = 36.912, P < 0.001) following SLD administration. Pairwise comparisons showed that the serum zinc levels of the 1/2 LD50 and 3/4 LD50 groups were significantly higher than those of the control group (P < 0.001); the serum zinc level of the 3/4 LD50 group was significantly higher than those of the 1/8 LD50 and 1/4 LD50 groups (P < 0.05). There was a positive correlation between the different SLDs of ZG and the serum zinc levels in mice (rs = 0.973, P < 0.001). H&E staining showed no significant histological abnormalities or lesions in the liver, kidney, and spleen tissues of mice in all experimental groups. CONCLUSION: The appropriate dose range of ZG for intravenous injection in C57BL/6J mice was clarified, providing a reference for future experimental research.


Assuntos
Gluconatos , Rim , Zinco , Camundongos , Animais , Camundongos Endogâmicos C57BL , Dose Letal Mediana , Zinco/toxicidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-38244824

RESUMO

The present investigation aimed to evaluate the long-term effects of malathion (Elathion®) at two sub-lethal concentrations (0.36 and 1.84 mgL-1) for 45 days after the determination of 96 h-LC50 value (18.35 mgL-1) in a commercially important aquaculture species, Labeo rohita by assaying multiple biomarker approaches. Total erythrocyte count (TEC), and haemoglobulin count (Hb) were found to be decreased while total leucocyte counts (TLC) were increased (p < 0.05) in malathion-intoxicated fish. Malathion exposure significantly reduced (p < 0.05) serum protein levels while significantly increased (p < 0.05) blood glucose levels. RNA activity in muscle was reduced (p < 0.05) while DNA activity increased (p < 0.05) in malathion-intoxicated fish. Acid phosphatase (ACP) activities in the brain; lacate dehydrogenase (LDH) activities in brain and liver were increased (p < 0.05), while alkaline phosphatase (ALP) activities in the brain; succinate dehydrogenase (SDH) activities in the brain, liver and kidney; acetylcholine esterase (AChE) activity in the brain; and ATPase activities in the brain, liver and kidney were reduced (p < 0.05) in comparison to control. Thus, the alteration in studied biomarkers was in a concentation-time dependent manner; however, it was more pronounced at the higher concentration at 45 days of exposure. The alteration in biomarker activity is probably a defensive mechanism/ adaptive response of fish to overcome the stress induced by malathion, which is a novel insight and possible impact on L.rohita. Our findings suggest malathion-induced stress, therefore, the use of malathion needs to be regulated to safeguard aquatic animals including fish and human health.


Assuntos
Cyprinidae , Malation , Animais , Humanos , Malation/toxicidade , Cyprinidae/metabolismo , Dose Letal Mediana , Água Doce , Biomarcadores/metabolismo
6.
Sci Total Environ ; 916: 170173, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266732

RESUMO

Pesticides are recognized as common environmental contaminants. The potential pesticide hazard to non-target organisms, including various mammal species, is a global concern. The global problem requires a comprehensive risk assessment. To assess the toxic effects of pesticides at the early stage, a toxicological risk analysis is conducted to determine pesticide hazard levels. World Health Organization (WHO) has established five pesticide hazard classes based on lethal dose (LD50) values to perform these assessments. In this paper, we have developed one-vs-all quantitative structure-activity relationship (OvA-QSAR) models using five machine-learning techniques with the selected optimum molecular descriptors. Descriptor selection was conducted based on correlation to evaluate the relevance and significance of individual features in our dataset. Our OvA-QSAR model was built using a dataset obtained from the WHO, covering a wide range of chemical pesticides. These models can predict the hazard category for a pesticide within the five available categories. Notably, our experiments demonstrate the outstanding performance and robustness of the Random Forest (RF) model in addressing the challenge of multi-class classification with the selected descriptors.


Assuntos
Praguicidas , Relação Quantitativa Estrutura-Atividade , Animais , Praguicidas/toxicidade , Praguicidas/análise , Dose Letal Mediana , Medição de Risco , Aprendizado de Máquina , Mamíferos
7.
Environ Pollut ; 343: 123256, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171424

RESUMO

Tire wear particles (TWP) are a major source of microplastics in the aquatic environment and the ecological impacts of their leachates are of major environmental concern. Among marine biota, copepods are the most abundant animals in the ocean and a main link between primary producers and higher trophic levels in the marine food webs. In this study, we determined the acute lethal and sublethal effects of tire particle leachates on different life stages of the cosmopolitan planktonic copepod Acartia tonsa. Median lethal concentration (LC50, 48 h) ranged from 0.4 to 0.6 g L-1 depending on the life stages, being nauplii and copepodites more sensitive to tire particle leachates than adults. The median effective concentration (EC50, 48 h) for hatching was higher than 1 g L-1, indicating a relatively low sensitivity of hatching to tire particle leachates. However, metamorphosis (from nauplius VI to copepodite I) was notably reduced by tire particle leachates with an EC50 (48 h) of 0.23 g L-1 and the absence of metamorphosis at 1 g L-1, suggesting a strong developmental delay or endocrine disruption. Leachates also caused a significant decrease (10-22%) in the body length of nauplii and copepodites after exposure to TWP leachates (0.25 and 0.5 g L-1). We tested a battery of enzymatic biomarkers in A. tonsa adult stages, but a sublethal concentration of 50 mg L-1 of tire particle leachates did not cause a statistically significant effect on the measured enzymatic activities. Our results show that tire particle leachates can negatively impact the development, metamorphosis, and survival of planktonic copepods. More field data on concentrations of TWPs and the fate and persistence of their leached additives is needed for a better assessment of the risk of tire particle pollution on marine food webs.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Plâncton , Plásticos/toxicidade , Dose Letal Mediana
8.
Microb Pathog ; 186: 106461, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048837

RESUMO

The global ornamental fish trade carries important risk factors for spreading pathogens between different countries and regions, not only for ornamental fish but also for cultured fish and even other animal species. In the current study, we reported the capacity of Aeromonas veronii and A. hydrophila isolated from ornamental fish to experimentally infect the reared Amazonian fish Colossoma macropomum. For this, those bacteria were identified, and a primary characterization was performed. Fish were inoculated with 0.1 mL of increasing concentrations of A. hydrophila or A. veronii (C1 = 1 × 102; C2 = 1.8 × 104; C3 = 2.1 × 106; C4 = 2.4 × 108 bacterial cells per mL) in the coelomic cavity. In the control group, fish received the same volume of sterile saline solution (0.9 %). Fish presented petechiae, skin suffusions, and mortality rates up to 100 % according to the inoculum concentration. Histopathologically, fish presented necrosis with karyolysis, loss of the cytoplasmic delimitation of cells of the renal tubules and hepatocytes, hemorrhage, cellular edema, and the presence of bacterial cells. The LD50-96h of A. veronii on C. macropomum was estimated at 2.4 × 106 CFU mL-1 and of A. hydrophila at 1.408 × 105 CFU mL-1. The results demonstrated that it is possible that Aeromonas species isolated from ornamental fish affect C. macropomum, causing similar clinical signs and lesions. This shows the importance of promoting risk control measures worldwide regarding the trade of ornamental fish.


Assuntos
Aeromonas , Caraciformes , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas veronii , Dose Letal Mediana , Fatores de Risco , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia
9.
Chemosphere ; 349: 140810, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029938

RESUMO

Labeo rohita, a fish species within the Carp family, holds significant dietary and aquacultural importance in South Asian countries. However, the habitats of L. rohita often face exposure to various harmful pesticides and organic compounds originating from industrial and agricultural runoff. It is challenging to individually investigate the effects of each potentially harmful compound. In such cases, in silico techniques like Quantitative Structure-Activity Relationship (QSAR) and quantitative Read-Across Structure-Activity Relationship (q-RASAR) can be employed to construct algorithmic models capable of simultaneously assessing the toxicity of numerous compounds. We utilized the US EPA's ToxValDB database to curate data regarding acute median lethal concentration (LC50) toxicity for L. rohita. The experimental variables included study type (mortality), study duration (ranging from 0.25 h to 4 h), exposure route (static, flowthrough, and renewal), exposure method (drinking water), and types of chemicals (industrial chemicals and pharmaceuticals). Using this dataset, we developed regression-based QSAR and q-RASAR models to predict chemical toxicity to L. rohita based on chemical descriptors. The key descriptors for predicting the toxicity of L. rohita in the regression-based QSAR model include F05[S-Cl], SpMax_EA(ri), s4_relPathLength_2, and SpDiam_AEA(ed). These descriptors can be employed to estimate the toxicity of untested compounds and aid in the development of compounds with lower toxicity based on the presence or absence of these descriptors. Both the QSAR and q-RASAR models serve as valuable tools for understanding the chemicals' structural features responsible for toxicity and for filling gaps in aquatic toxicity data by predicting the toxicity of newly untested compounds in relation to L. rohita. Finally, the developed best model was employed to predict 297 external chemicals, the most toxic substances to L. rohita were identified as cyhalothrin, isobornyl thiocyanatoacetate, and paclobutrzol, while the least toxic ones included ethyl acetate, ethylthiourea, and n-butyric acid.


Assuntos
Cyprinidae , Toxinas Biológicas , Animais , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Dose Letal Mediana , Compostos Orgânicos/toxicidade
10.
Chem Biodivers ; 21(1): e202301284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036947

RESUMO

Unintentional environmental effects brought on by insecticides encourage the creation of safer substitutes. A very polyphagous migrating lepidopteran pest species in Africa called S. Frugiperda causes terrible damage. In the current paper, treatment of 4-acetylphenyl 4-methylbenzenesulfonate with different aromatic aldehydes in the presence of NaOH afforded benzylideneacetophenones. The structure of the newly prepared compounds were proved by different spectroscopic techniques such as IR, 1 H-NMR, 13 C NMR, and elemental analysis. We looked at the association between contact with S. frugiperda and stricture reaction to examine their harmful effect. Additionally, S. frugiperda was used for testing the newly created compounds for their ability to kill insects. The majority of substances have been proven to be effective and promising. It has been found that 4-[3-(4-Methylphenyl)prop-2-enoyl]phenyl-4-methyl benzenesulfonate (4) was the most active with an LC50 =3.46 mg/L of 2nd instar larvae and LC50 =9.45 mg/L of 4th instar larvae. Moreover, some of biological and histopathological aspects of the synthesized products were investigated under laboratory conditions.


Assuntos
Chalcona , Inseticidas , Animais , Inseticidas/farmacologia , Spodoptera , Larva , Dose Letal Mediana
11.
Environ Toxicol Pharmacol ; 105: 104322, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993075

RESUMO

With COVID-19, there has been an increase in the use of gelling agents for hand sanitizer production, and as a result, the release of this product into wastewater could induce impacts and adverse reactions in living organisms. Thus, ecotoxicological and cytotoxicological assessments of gelling agents with test organisms from different trophic levels are necessary to assess their environmental safety. For this, seven cellulose-based gelling agents and a polyacrylic acid derivative (C940) were selected for tests with Artemia salina. The most toxic agent was tested on Allium cepa to assess cytotoxicity. The volatile compounds of the gelling agents were analyzed. Cellulose-based gelling agents were not considered toxic according to their LC50, but C940 presented moderate toxicity to A. salina and cytotoxicity to Allium cepa, but without mutagenicity. In addition, C940 contained cyclohexane as a volatile compound. Thus, cellulose-based gelling agents are better environmental options than carbomer for 70% alcohol gel sanitizer.


Assuntos
Etanol , Mutagênicos , Animais , Mutagênicos/toxicidade , Artemia , Dose Letal Mediana , Celulose/toxicidade
12.
Sci Total Environ ; 912: 168741, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040350

RESUMO

Benzotriazoles are heterocyclic compounds typically presenting a benzene ring fused with a triazole molecule. The industry uses these compounds as anti-corrosion agents and recently, they have been employed in the pharmaceutical industry and in detergent formulations. Benzotriazoles persist in the environment, and water treatment plants cannot degrade them completely. Consequently, these compounds have been detected in rivers, lakes, and drinking water, which makes assessing their safety for the human and aquatic animal populations crucial. Here, we have evaluated and compared how exposure to 1H-benzotriazole or 5-chloro-benzotriazole affect the zebrafish embryo-larval stages. We have determined the acute toxicity, morphometric alterations, and acetylcholinesterase activity on zebrafish embryos, as well as behavioral endpoints using the tail coiling assay. The estimated LC50 of 5-chloro-benzotriazole was 19 mg/L, whereas 1H-benzotriazole caused no mortality. The zebrafish embryos exposed to 20 and 25 mg/L 5-chloro-benzotriazole had decreased hatching rate and exhibited pericardial and yolk sac edemas. Furthermore, the embryo length and eye area were decreased, in contrast with an increased yolk sac after exposure to 20 mg/L 5-chloro-benzotriazole. In turn, 1H-benzotriazole also decreased the eye area of zebrafish embryos, but no other significant morphological alterations were observed. The tail coiling assay showed that the zebrafish embryos increased the percentage of time moving and the number of embryonic movements per minute after exposure to 1H-benzotriazole (15 mg/L) or 5-chloro-benzotriazole (20 and 25 mg/L), indicating that these compounds were potentially neurotoxic. However, acetylcholinesterase activity was not significantly altered in embryos exposed to 1H-benzotriazole, but significantly decreased when exposed to 0.05 mg/L 5-chloro benzotriazole confirming its neurotoxicity at a much lower concentration. Our findings showed that 5-chloro-benzotriazole seems to induce more harmful alterations to zebrafish embryos than 1H-benzotriazole. Nevertheless, 1H-benzotriazole seems to induce a direct effect on eye development for concentrations lower than the ones of 5-chloro-benzotriazole affecting zebrafish embryos.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Humanos , Acetilcolinesterase , Triazóis/toxicidade , Dose Letal Mediana , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade
13.
J Toxicol Environ Health A ; 87(4): 166-184, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38073470

RESUMO

Copper (Cu) is a naturally occurring metal with essential micronutrient properties. However, this metal might also pose increased adverse environmental and health risks due to industrial and agricultural activities. In Brazil, the maximum allowable concentration of Cu in drinking water is 2 mg/L. Despite this standard, the impact of such concentrations on aquatic organisms remains unexplored. This study aimed to evaluate the toxicity of CuSO4 using larval zebrafish at environmentally relevant concentrations. Zebrafish (Danio rerio) larvae at 72 hr post-fertilization (hpf) were exposed to nominal CuSO4 concentrations ranging from 0.16 to 48 mg/L to determine the median lethal concentration (LC50), established at 8.4 mg/L. Subsequently, non-lethal concentrations of 0.16, 0.32, or 1.6 mg/L were selected for assessing CuSO4 -induced toxicity. Morphological parameters, including body length, yolk sac area, and swim bladder area, were adversely affected by CuSO4 exposure, particularly at 1.6 mg/L (3.31 mm ±0.1, 0.192 mm2 ±0.01, and 0.01 mm2 ±0.05, respectively). In contrast, the control group exhibited values of 3.62 mm ±0.09, 0.136 mm2 ±0.013, and 0.3 mm2 ±0.06, respectively. Behavioral assays demonstrated impairments in escape response and swimming capacity, accompanied by increased levels of reactive oxygen species (ROS) and lipid peroxidation. In addition, decreased levels of non-protein thiols and reduced cellular viability were noted. Data demonstrated that exposure to CuSO4 at similar concentrations as those permitted in Brazil for Cu adversely altered morphological, biochemical, and behavioral endpoints in zebrafish larvae. This study suggests that the permissible Cu concentrations in Brazil need to be reevaluated, given the potential enhanced adverse health risks of exposure to environmental metal contamination.


Assuntos
Cobre , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Peixe-Zebra/fisiologia , Larva , Brasil , Dose Letal Mediana , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero
14.
Virus Res ; 340: 199307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160910

RESUMO

Ostreid herpes virus 1 (OsHV-1) has been classified within the Malacoherpesviridae family from the Herpesvirales order. OsHV-1 is the etiological agent of a contagious viral disease of Pacific oysters, C. gigas, affecting also other bivalve species. Mortality rates reported associated with the viral infection vary considerably between sites and countries and depend on the age of affected stocks. A variant called µVar has been reported since 2008 in Europe and other variants in Australia and in New Zealand last decade. These variants are considered as the main causative agents of mass mortality events affecting C. gigas. Presently there is no established cell line that allows for the detection of infectious OsHV-1. In this context, a technique of propidium monoazide (PMA) PCR was developed in order to quantify "undamaged" capsids. This methodology is of interest to explore the virus infectivity. Being able to quantify viral particles getting an undamaged capsid (not only an amount of viral DNA) in tissue homogenates prepared from infected oysters or in seawater samples can assist in the definition of a Lethal Dose (LD) 50 and gain information in the experiments conducted to reproduce the viral infection. The main objectives of the present study were (i) the development/optimization of a PMA PCR technique for OsHV-1 detection using the best quantity of PMA and verifying its effectiveness through heat treatment, (ii) the definition of the percentage of undamaged capsids in four different tissue homogenates prepared from infected Pacific oysters and (iii) the approach of a LD50 during experimental viral infection assays on the basis of a number of undamaged capsids. Although the developped PMA PCR technique was unable to determine OsHV-1 infectivity in viral supensions, it could greatly improve interpretation of virus positive results obtained by qPCR. This technique is not intended to replace the quantification of viral DNA by qPCR, but it does make it possible to give a form of biological meaning to the detection of this DNA.


Assuntos
Azidas , Crassostrea , Herpesviridae , Propídio/análogos & derivados , Viroses , Animais , Herpesviridae/genética , DNA Viral/genética , Capsídeo , Dose Letal Mediana , Crassostrea/genética , Reação em Cadeia da Polimerase
15.
Environ Pollut ; 340(Pt 2): 122828, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907191

RESUMO

Numerous toxic substances are directly and indirectly discharged by humans into water bodies, causing distress to the organisms living on it. 6PPD, an amino antioxidant from tires reacts with ozone to form 6PPD-Q, which has garnered global attention due to its lethal nature to various organisms. This review aims to provide an understanding of the sources, transformation, and fate of 6PPD-Q in water and the current knowledge on its effects on aquatic organisms. Furthermore, we discuss research gaps pertaining to the mechanisms by which 6PPD-Q acts within fish bodies. Previous studies have demonstrated the ubiquitous presence of 6PPD-Q in the environment, including air, water, and soil. Moreover, this compound has shown high lethality to certain fish species while not affecting others. Toxicological studies have revealed its impact on the nervous system, intestinal barrier function, cardiac function, equilibrium loss, and oxidative stress in various fish species. Additionally, exposure to 6PPD-Q has led to organ injury, lipid accumulation, and cytokine production in C. elegans and mice. Despite studies elucidating the lethal dose and effects of 6PPD-Q in fish species, the underlying mechanisms behind these symptoms remain unclear. Future studies should prioritize investigating the mechanisms underlying the lethality of 6PPD-Q in fish species to gain a better understanding of its potential effects on different organisms.


Assuntos
Aquicultura , Benzoquinonas , Peixes , Fenilenodiaminas , Água , Animais , Humanos , Camundongos , Caenorhabditis elegans , Pesqueiros , Fenilenodiaminas/química , Fenilenodiaminas/toxicidade , Benzoquinonas/química , Benzoquinonas/toxicidade , Peixes/metabolismo , Dose Letal Mediana
16.
Molecules ; 28(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959851

RESUMO

Cyetpyrafen is a compound that lacks inherent uptake and systemic translocation activity. If mites do not come into direct contact with the pesticide solution on leaves, the efficacy cannot be achieved. Controlling the particle size can potentially play a crucial role in the manifestation of efficacy. In this study, high-throughput formulation technology was used to systematically screen a large number of adjuvants to obtain cyetpyrafen formulations. The particle size of the active ingredient in the formulation was measured. By examining the dynamic light scattering and contact angle, we simulated the actual process of the efficacy transmission of cyetpyrafen formulations against Tetranychus cinnabarinus. Our results showed that the activity of cyetpyrafen increases as the particle size decreases, suggesting that reducing the particle size can enhance the coverage and deposition on crop leaves, and further improve the dispersion efficiency and enhance spreading capabilities. Furthermore, controlling the particle size at 160 nm resulted in an LC50 value of 0.2026, which is approximately double than that of the commercial product. As a novel pesticide for mites, our study presents the most effective cyetpyrafen formulation in practice. Our findings provide valuable insights into controlling other mite species that pose a threat to agricultural products.


Assuntos
Ácaros , Praguicidas , Animais , Praguicidas/farmacologia , Tamanho da Partícula , Agricultura , Dose Letal Mediana
17.
Sci Rep ; 13(1): 20806, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012220

RESUMO

Botulinum neurotoxin (BoNT) shows high lethality and toxicity, marking it as an important biological threat. The only effective post-exposure therapy is botulinum antitoxin; however, such products have great potential for improvement. To prevent or treat BoNT, monoclonal antibodies (mAbs) are promising agents. Herein, we aimed to construct a bispecific antibody (termed LUZ-A1-A3) based on the anti-BoNT/A human monoclonal antibodies (HMAb) A1 and A3. LUZ-A1-A3 binds to the Hc and L-HN domains of BoNT/A, displaying potent neutralization activity against BoNT/A (124 × higher than that of HMAb A1 or HMAb A3 alone and 15 × higher than that of the A1 + A3 combination). LUZ-A1-A3 provided effective protection against BoNT/A in an in vivo mouse model. Mice were protected from infection with 500 × LD50 of BoNT/A by LUZ-A1-A3 from up to 7 days before intraperitoneal administration of BoNT/A. We also demonstrated the effective therapeutic capacity of LUZ-A1-A3 against BoNT/A in a mouse model. LUZ-A1-A3 (5 µg/mouse) neutralized 20 × LD50 of BoNT/A at 3 h after intraperitoneal BoNT/A administration and complete neutralized 20 × LD50 of BoNT/A at 0.5 h after intraperitoneal BoNT/A administration. Thus, LUZ-A1-A3 is a promising agent for the pre-exposure prophylaxis and post-exposure treatment of BoNT/A.


Assuntos
Toxinas Botulínicas Tipo A , Botulismo , Humanos , Camundongos , Animais , Sorogrupo , Anticorpos Monoclonais/farmacologia , Modelos Animais de Doenças , Dose Letal Mediana , Botulismo/prevenção & controle
18.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(4): 394-397, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37926476

RESUMO

OBJECTIVE: To evaluate the molluscicidal activity of surfactin against Oncomelania hupensis, so as to provide the experimental basis for use of Bacillus for killing O. hupensis. METHODS: O. hupensis snails were collected from schistosomiasisendemic foci of Wuhu City on September 2022, and Schistosoma japonicum-infected snails were removed. Then, 60 snails were immersed in surfactin at concentrations of 2, 1, 0.5, 0.25, 0.125 mg/mL and 0.062 5 mg/mL for 24, 48, 72 hours at 26 °C, while ultrapure water-treated snails served as controls. The median lethal concentration (LC50) of surfactin against O. hupensis snails was estimated. O. hupensis snails were immersed in surfactin at a concentration of 24 h LC50 and ultrapure water, and then stained with propidium iodide (PI). The PI uptake in haemocyte was observed in O. hupensis snails using fluorescence microscopy. RESULTS: The mortality of O. hupensis was 5.0% following immersion in surfactin at a concentration of 0.062 5 mg/mL for 24 h, and the mortality was 100.0% following immersion in surfactin at a concentration of 2 mg/mL for 72 h, while no snail mortality was observed in the control group. There were significant differences in the mortality of O. hupensis in each surfactin treatment groups at 24 (χ2 = 180.150, P < 0.05), 48 h (χ2 = 176.786, P < 0.05) and 72 h (χ2 = 216.487, P < 0.05), respectively. The average mortality rates of O. hupensis were 38.9% (140/360), 62.2% (224/360) and 83.3% (300/360) 24, 48 h and 72 h post-immersion in surfactin, respectively (χ2 = 150.264, P < 0.05), and the 24, 48 h and 72 h LC50 values of surfactin were 0.591, 0.191 mg/mL and 0.054 mg/mL against O. hupensis snails. Fluorescence microscopy showed more numbers of haemocytes with PI uptake in 0.5 mg/mL surfactintreated O. hupensis snails than in ultrapure water-treated snails for 24 h, and there was a significant difference in the proportion of PI uptake in haemocytes between surfactin-and ultrapure water-treated snails (χ2 = 6.690, P < 0.05). CONCLUSIONS: Surfactin is active against O. hupensis snails, which may be associated with the alteration in the integrity of haemocyte membrane.


Assuntos
Moluscocidas , Schistosoma japonicum , Animais , Moluscocidas/farmacologia , Caramujos , Dose Letal Mediana , Água
19.
Toxins (Basel) ; 15(10)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37888618

RESUMO

Okadaic acid (OA) and its analogues cause diarrhetic shellfish poisoning (DSP) in humans, and risk assessments of these toxins require toxicity equivalency factors (TEFs), which represent the relative toxicities of analogues. However, no human death by DSP toxin has been reported, and its current TEF value is based on acute lethality. To properly reflect the symptoms of DSP, such as diarrhea without death, the chronic toxicity of DSP toxins at sublethal doses should be considered. In this study, we obtained acute oral LD50 values for OA and dinophysistoxin-1 (DTX-1) (1069 and 897 µg/kg, respectively) to set sublethal doses. Mice were treated with sublethal doses of OA and DTX-1 for 7 days. The mice lost body weight, and the disease activity index and intestinal crypt depths increased. Furthermore, these changes were more severe in OA-treated mice than in the DTX-1-treated mice. Strikingly, ascites was observed, and its severity was greater in mice treated with OA. Our findings suggest that OA is at least as toxic as DTX-1 after repeated oral administration at a low dose. This is the first study to compare repeated oral dosing of DSP toxins. Further sub-chronic and chronic studies are warranted to determine appropriate TEF values for DSP toxins.


Assuntos
Intoxicação por Frutos do Mar , Humanos , Animais , Camundongos , Ácido Okadáico/toxicidade , Dose Letal Mediana , Diarreia , Piranos/toxicidade
20.
BMC Pharmacol Toxicol ; 24(1): 54, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833798

RESUMO

BACKGROUND: AT-533 is a novel heat shock protein 90 inhibitor that exerting anti-inflammatory, antiviral, and antitumor efficacy. Furthermore, the gel made of AT-533 as raw material named AT-533 gel has the function of repairing keratitis and dermatitis caused by herpes virus infection. However, the acute safety evaluation of AT-533 and AT-533 gel has not been conducted. METHODS AND RESULTS: Herein, we performed acute toxicological studies of AT-533 and AT-533 gel in Sprague-Dawley rats. Fifteen-day acute toxicity study of AT-533 was conducted in both male and female Sprague-Dawley rats at doses of 5, 50, 250 and 500 mg/kg and AT-533 gel at 5 g/kg in the study. During experiment, food consumption and mortality were observed and body weight, hematology, serum biochemistry and histopathological assessment of rats were carried out. No abnormal changes were observed in rats percutaneously treated with AT-533 at 5 mg/kg and 50 mg/kg and AT-533 gel. However, loss of appetite and body weight, adverse reactions, toxicologically relevant alterations in hematology and biochemistry were found in rats percutaneously treated with AT-533 at 250 mg/kg and 500 mg/kg during 15-day acute dermic toxicity study. CONCLUSIONS: The aforementioned results suggested that the LD50 of AT-533 is 228.382 mg/kg and the LD50 of AT-533 gel is greater than 5 g/kg. These findings indicated that AT-533 is non-toxic in rats when the dose less than 50 mg/kg and AT-533 gel can be considered a gel with no toxicity at doses less than 5 g/kg.


Assuntos
Ratos Sprague-Dawley , Ratos , Masculino , Feminino , Animais , Dose Letal Mediana , Peso Corporal , Administração Oral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...